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In large-scale neural networks in the brain the emergence of global behavioral patterns, manifested by
electroencephalographic activity, is driven by the self-organization of local neuronal groups into synchronously
functioning ensembles. However, the laws governing such macrobehavior and its disturbances, in particular
epileptic seizures, are poorly understood. Here we use a mean-field population network model to describe a
state of baseline physiological activity and the transition from the baseline state to rhythmic epileptiform
activity. We describe principles which explain how this rhythmic activity arises in the form of spatially uniform
self-sustained synchronous oscillations. In addition, we show how the rate of migration of the leading edge of
the synchronous oscillations can be theoretically predicted, and compare the accuracy of this prediction with
that measured experimentally using multichannel electrocorticographic recordings obtained from a human
subject experiencing epileptic seizures. The comparison shows that the experimentally measured rate of mi-
gration of the leading edge of synchronous oscillations is within the theoretically predicted range of values.
Computer simulations have been performed to investigate the interactions between different regions of the
brain and to show how organization in one spatial region can promote or inhibit organization in another. Our
theoretical predictions are also consistent with the results of functional magnetic resonance imaging �fMRI�, in
particular with observations that lower-frequency electroencephalographic �EEG� rhythms entrain larger areas
of the brain than higher-frequency rhythms. These findings advance the understanding of functional behavior
of interconnected populations and might have implications for the analysis of diverse classes of networks.
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I. INTRODUCTION

Rhythmic activity in the central nervous system ranges
from series of action potentials produced by single neurons,
to collective oscillations in small neuronal groups, to com-
plex electroencephalographic �EEG� rhythms arising at the
level of large neuronal populations �1–3�. A multitude of
diverse cellular and network processes drive oscillatory ac-
tivity at these different levels of organization. On the single
neuron level electrophysiological activity �i.e., transmem-
brane potential� is determined by the flow of ionic currents
across the cell’s membrane, as described by Hodgkin-
Huxley-type formalism. By contrast, activity on the popula-
tion level arises due to collective synchronization of large
pools of neuronal cells �4�. This macroscopic behavior is
manifested by field-averaged electrical activity that can be
recorded on the scalp or directly on the cortical surface, or
tracked indirectly using functional magnetic resonance imag-
ing �fMRI� techniques �1,2,4–8�.

The focus of our study is on the theoretical analysis of
such macroscopic synchronized rhythmicity. Experimental
studies have shown that global synchronization plays a
prominent role in normal brain functioning, in particular the
dynamics of sleep and wakefulness �9�. Furthermore, syn-
chronized rhythmicity, spreading uncontrollably over large
regions of the brain, has been implicated in the pathogenesis
of some disorders of the central nervous system, most nota-
bly epilepsy �3,10�. Although epilepsy represents a large and
heterogeneous group of diseases with different pathophysi-
ological mechanisms, a wealth of evidence from clinical
studies strongly suggests that impaired collective functioning
of neuronal populations plays a crucial role in a significant

proportion of patients with this debilitating disease �1�.
Mathematical modeling of the dynamics of large-scale

neural networks represents a formidable challenge. In par-
ticular, when the Hodgkin-Huxley description of single-cell
physiology is applied to model behavior at the global level of
the entire brain, both theoretical analysis and numerical
simulations quickly become intractable because of unman-
ageably large numbers of interacting variables �11�. Accord-
ingly, to understand rhythmic behavior at this level, it seems
natural to use the coarse-grained �mean� field approach in-
troduced into neuroscience by Wilson and Cowan �WC�
�11,12�. This approach, which emphasizes large-scale statis-
tical properties, has proved useful for gaining insight into
global dynamical behavior of neuronal populations.

In particular, WC-type models have recently been used to
study existence and stability of traveling waves �5,13–15�.
Although these studies provided valuable insights into wave
dynamics in WC-type neuronal networks, they did not ana-
lyze more realistic neurophysiological processes, in particu-
lar the formation and evolution of global �EEG� rhythms on
the surface of the cortex �2,3�. The analysis of realistic neu-
rophysiological activity in earlier studies has been impeded,
at least in part, by the lack of a description of a physiological
baseline �16,17�. �As opposed to the mathematical initial rest
state, usually represented by zero level of activity, a physi-
ological baseline has nonzero activity �18��. Due to this defi-
cit of knowledge, the pathway from the baseline state to a
hyperexcitable state of epileptiform activity has not been
studied. Thus, the main objectives of the present study are to
examine the following: �i� how a baseline state of electro-
physiological activity �see the next section for the definition
of baseline� can be reproduced in a WC-type model, and �ii�
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how different types of rhythmic behavior, including various
synchronized rhythms and epileptiform activity, can arise
from the baseline state and spread out spatially due to the
interactions of the neural network with various stimuli.

We show how synchronization and loss of synchroniza-
tion can be predicted by analyzing the interactions between
external stimuli, connectivity, and recovery properties of in-
terconnected neuronal populations. We focus on the theoret-
ical understanding of dynamics of epileptiform activity be-
cause of its clinical importance, and also because of the
experimental data available for validation of our results
�3,8�.

II. MODEL

We begin by defining a realistic state of baseline physi-
ological activity, which represents activity of the brain in the
state of relaxation. In this state, neurons receive some level
of spontaneous, weak stimulation by small, naturally present
concentrations of neurohormonal substances �19�. The levels
of such stimulation vary depending on the relaxation level.
In waking adults this state is commonly associated with al-
pha rhythm, whereas slower rhythms are usually observed
during deeper relaxation and sleep �19,20�. These rhythms
are almost never stationary, with time-varying frequency and
amplitude, as well as other a-periodic patterns �19�. There-
fore, the variability of brain activity patterns in such a
broadly defined baseline state cannot be described in terms
of a single rhythm. As a first step towards modeling a wide
range of realistic baseline patterns, we propose the following
two-component definition of a baseline state:

�I� A time-independent component represented by sub-
threshold excitatory activity E and superthreshold inhibitory
activity I.

�II� A time-varying component which may include single-
pulse waves, multipulse waves, or periodic waves caused by
spontaneous neuronal activity �19–21�.

This two-component formulation makes the baseline ac-
tivity definition sufficiently flexible to allow simulation of a
variety of rhythmic patterns observed in the cortex, including
alpha and slower rhythms, single-pulse and multipulse
waves, and the periodic self-production of waves, without
periodic forcing or stimuli �6,7,13–15,19,21�. Moreover, this
formulation also allows one to reproduce the spontaneous
emergence and evolution of different activity patterns due to
the system’s multistability depending on the initial condi-
tions and inputs, without changes in parameters. Such spon-
taneous transformations previously were considered impos-
sible in this type of model �22�.

Below we show how this baseline state can be reproduced
in a WC-type model. We then describe a plausible theoretical
path from the baseline state to large-scale self-sustained os-
cillations, which spread out uniformly from the point of
stimulus. For this we modify the recent three-variable exten-
sion of the Pinto-Ermentrout WC-type model �13� formu-
lated by Pinto and Troy �23�. The advantage of the latter
model in representing a physiological baseline is in its more
realistic and balanced representation of the activities of both
excitatory and inhibitory neuronal populations �24� com-
pared to the earlier, Pinto-Ermentrout model, which did not
include the inhibitory activity and thus represented an unbal-
anced, excitatory �disinhibited� system �13,25�. Here, we in-
troduce a concept of time-independent activation factors
which force the system to undergo a transition from an initial
“mathematical” rest state to a state of time-independent base-
line activity. The two-dimensional version of the model con-
sists of the following system:

Linear part Integral part

Time
independent
activation Stimulus

�E

�t
= − E − R + �

R2
�EE�x − x�,y − y��f�E − �1�dx�dy�

− ��
R2

�IE�x − x�,y − y��f�I − �2�dx�dy�
+ ��x,y� + ��x,y,t� ,

�
�I

�t
= − I + �

R2
�EI�x − x�,y − y��f�E − �1�dx�dy�

− �
R2

�II�x − x�,y − y��f�I − �2�dx�dy�
+ ��x,y� + ��x,y,t� ,

�R

�t
= 	�
E − R�

�1�
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In this system a spatial unit �x ,y� corresponds to a local
neuronal population �12�. The variables E�x ,y , t� and
I�x ,y , t� represent the average activity �i.e., transmembrane
potential� levels of the excitatory and inhibitory neuronal
populations at the spatial point �x ,y� and time t �13,26� with
long-range �i.e., nonlocal� connections; R governs the recov-
ery of E �13,14,28,29�. In each equation the integral term
with a negative sign in front represents the contribution from
the population of inhibitory neurons. Hence, the excitatory
and inhibitory connection functions �ij representing nonlocal
influences are always positive and clearly separated. The ad-
vantage of such a separation is in its flexibility to model
various combinations of the two processes, which might ex-
ist in different experimental and clinical settings �at a cost of
adding an additional equation to the system�. Recently, Kang
et al. have successfully used the flexibility of this approach
to investigate the interactions between the spatial range of
inhibition, its time constant, and resulting electrophysiologi-
cal patterns �27�.

Thus, the network �1� is balanced by positive feedback
provided by the activity of the excitatory neuronal popula-
tion E, and negative feedback of the variables I and R. This
balance is essential for normal functioning of the system
�1–3,18�. The function f�u� defines the sigmoidal-shaped
neuronal firing rate; f is approximated by the Heaviside step
function �13�; �ij �0 denotes connectivity from population i
to population j and has the typical connectivity form �ij

=Aije
−kij

�x2+y2
�in our computations in Eq. �4� we set �EE

=2.1e−�x2+y2
� �13,14,28,29�. ��0 influences the strength of

the connections of inhibitory to excitatory neurons; in our
study, we assume that �=1. Although � could be absorbed
into �IE, we keep it separately for future, more general stud-
ies. �1=0.1 and �2=0.1 are constant threshold levels for E

and I �30�, � is the inhibitory time constant �for simplicity
�=1 in our computations� �30�, 	=0.1 and 
 determine the
rate of change of R �13,14,28,29�. The time-independent
baseline activation factors ��0 and ��0 are introduced as
a lumped-parameter representation of intrinsic intracellular
and extracellular biochemical processes, including neurohor-
monal influences, to force the system to evolve from “math-
ematical” rest to the time-independent baseline. Because our
focus is on large-scale functional dynamics �i.e., a large-scale
approximation of multiple intracellular and extracellular pro-
cesses�, the detailed characterization of each individual bio-
chemical process lies beyond the scope of this study. The
function ��x ,y , t� has three components which simulate
three different time-dependent physiological stimuli �see
Table I�,

��x,y,t�

=�
0, 0 � t � T1,

��
R2

�IE�x�,y��dx�dy�, T1 � t � T2,

��
R2

�IE�x�,y��dx�dy� + �x,y,t� , t � T2, �
�2�

where �IE and �x , t� are positive, uniformly bounded, and
continuous, and ��0 is assumed to lie in a bounded range.
Note that this form for ��x ,y , t� represents a small subset of
all possible types of physiological stimuli. It was chosen be-
cause it allowed for a plausible simple path to self-sustained
rhythmic oscillations, which is the main focus of this study.
A number of different stimulus forms have been previously

TABLE I. Dynamic states of the system and input factors.

State of the system Input Dynamics

I. Mathematical rest �=0 and �=0, �=0 E , I ,R= �0,0 ,0�
II. Transition from
rest to the time-
independent
baseline: 0� t�T*

Time-independent activation is
introduced: ��0 and ��0;
stimulus: �=0

System begins its evolution from the
rest state �0,0,0� towards baseline;
both E and I remain subthreshold:
E��1, I��2

III. Time-independent baseline
T*� t�T1

Time-independent activation remains:
��0 and ��0;
stimulus: �=0

E remains subthreshold but I exceeds
threshold uniformly: E��1,
I��2

IV. Time-varying
�physiologically
relevant� baseline
T1� t�T2

Time-independent activation remains:
��0 and ��0, and in addition,
time-varying activation �i.e., stimulus� is
introduced:
�=	R2�IE�x� ,y��dx�dy�+�x ,y , t�
and the integral term counterbalances
effects of inhibitory population.

E�x ,y , t���1, I�x ,y , t���2

Weak, short-time �x ,y , t�
component of stimulus may produce
different types of waves �15�

V. Global rhythmic
state
t�T2

Time-independent activation remains:
��0 and ��0, and time-varying
activation �stimulus� remains, but the
�x ,y , t� component becomes
stronger:
�=�	R2�IE�x� ,y��dx�dy�+�x ,y , t�

E��1, I��2

Strong, short-time �x ,y , t�
component of stimulus induces the
transition from the baseline state to
global rhythmicity, including rotating
waves and synchronous oscillations.
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used to induce a variety of patterns, including solitary and
multibump traveling waves, rotating waves �15,25�, and spa-
tially uniform self-sustained rhythmic oscillations �8�. Such
stimulus-evoked patterns may reflect modifications of neuro-
hormonal concentrations, synaptic transmission, and ionic
membrane channel kinetics depending on the type of stimu-
lus and neuronal populations involved �31�. In our model
��x ,y , t� is present in both the excitatory and inhibitory
parts of Eq. �1�, because in most neural architectures the
inhibitory neurons receive the same feedforward projections
as the excitatory neurons �32,33�.

A combination of the activation factor � and stimulus
��x ,y , t� in the equation describing the inhibitory activity I
is sufficiently general to allow one to obtain a rich variety of
dynamical patterns. When � is small and ��x ,y , t� is absent
�or small�, the inhibitory activity I will remain relatively un-
changed, leaving the dynamics of the model unchanged as
well. On the other hand, when � becomes large enough, it
can counterbalance �II by itself �or in combination with
��x ,y , t��. In the Appendix, for mathematical simplicity, we
let � itself be large enough to negate the �II term and to
cause I to quickly and uniformly exceed the threshold. The
presence of ��x ,y , t��0 causes I to exceed the threshold
even faster but does not change the dynamics of the system
qualitatively. Thus, when � is large, the stimulus ��x ,y , t�
plays a significant role in the dynamics of the system only in
the excitatory part.

Thus, the general structure of Eq. �1� consists of a linear
part, an integral part, baseline activation factors, and time-
dependent stimuli. The integral part of Eq. �1� represents the
effects of activity of all populations through long-range con-
nections. This term is the only source of nonlinearity and
nontrivial dynamics in the system. We note that when the
activation factors, external stimuli, and connection terms are
absent, Eq. �1� reduces to the linear part, and all activity of
the network decays to the stable rest state �E , I ,R�
= �0,0 ,0�. Throughout, we assume that E, I, and R are ini-
tially at rest. That is,

E�x,y,0� = I�x,y,0� = R�x,y,0� = 0 for all �x,y� � R2.

�3�

We use this initial condition �although this mathematical ab-
straction is not relevant for a living physiological organism�
because Eq. �3� is commonly used in computer modeling as
a starting point for simulations. Hence, we also use this con-
dition to provide a common “reference point” for compari-
son of our investigation with previous modeling studies.

Our goal is to show how the system evolves from the
mathematical �nonphysiological� rest state �3� to a realistic
state of baseline physiological activity, as defined at the be-
ginning of this section. As explained above, this process con-
sists of two stages �Table I�. First, the system evolves into
the time-independent baseline state �Table I, part II�, where E
and I have reached constant levels of activity which are uni-
formly close to their respective time-average levels. Because
electrophysiological rhythms �� or �� in this relaxed state are
relatively slow, the time-average level of such activity �i.e.,
excitatory activity E� would be below its threshold �E��1�.

Since the excitatory and inhibitory activities are usually re-
ciprocal �24,34�, one can assume that this effect is due to the
suprathreshold level of the inhibitory activity I �I��2�,

E�x,y,t� � �1 and I�x,y,t� � �2 for all �x,y� � R2.

This non-zero-activity state is more realistic for a living or-
ganism than the initial zero-activity mathematical rest state.
However, the system does not yet exhibit realistic, time-
varying, rhythmical behavior. For this reason, we have added
the second time-varying component of baseline. A descrip-
tion of the dynamic process that leads to the baseline state
through the activation factors � and �, and appropriately
timed stimuli � is given in Sec. II A. Further mathematical
details are provided in the Appendix. We also describe two
additional mathematical properties which are needed for the
transition from the baseline state to a state of epileptiform
activity �Sec. II B and Sec. II C�. These include oscillatory
properties of the linear part of the model �Sec. II B�, and
global bistability properties �Sec. II C�. Finally, we show
how a dynamical process, combining the properties de-
scribed by all three principles, can form a physiologically
plausible path to synchronized rhythmic activity in Eq. �1�.
In numerical experiments we demonstrate how synchronous
self-sustained oscillations �SSO� arise, spread, and interact,
and how these dynamics are consistent with neurophysi-
ological experiments �5,8�.

We now describe three mathematical properties, summa-
rized for clarity in the form of principles, which give suffi-
cient conditions for spontaneous self-organization in Eq. �1�.

A. Principle I

The network can be transformed into a reduced, positive
feedback system. A combination of the time-independent ac-
tivation factors and time-dependant stimuli is required to
counterbalance the negative feedback of variables R and I
and transform �1� into a positive-feedback system capable of
self-organization. Recall from Eq. �3� that the solution of Eq.
�1� is initially in the stable �“mathematical”� rest state
�E ,R , I�= �0,0 ,0�. The transformation begins when we let
the baseline activation factor � be of sufficient magnitude to
cause the tonic activity of the inhibitory neurons �I� to
quickly and uniformly increase to its threshold level �2.
When this threshold is reached at a critical time t=T* the
system has undergone the transition from rest to the time-
independent baseline, and the first step of the transformation
is complete �Table I, parts I–II� �17�. Details of this transition
are given in the Appendix. Over the interval �0, T1� the vari-
ables E and R remain practically unchanged because their
response time to the activation factors is relatively slow com-
pared to that of I �see the Appendix�. For t�T* the system
remains in this state until t=T1�T* when a stimulus � is
applied which causes the �E , I ,R� network Eq. �1� to trans-
form into a time-varying baseline state in which the activity
of the inhibitory population I is temporarily counterbalanced
�Table I, part III�. As Table I �part III� shows, the integral
part of � determines the minimal magnitude of the stimulus
required to counterbalance �block� the effects of the inhibi-
tory neuronal population �when �x ,y , t�=0�. The magnitude
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of � remains relatively small as long as its �x ,y , t� compo-
nent is weak. Such weak stimuli can produce different types
of waves depending on �, but no self-sustained oscillations.
For t�T1 the system remains in this time-varying baseline
state until a sufficiently strong stimulus �x ,y , t� is applied at
a time t=T2, and subsequently the system dynamics evolve
into rhythmic synchronized oscillations �Table I, parts IV�. In
the Appendix we also show how a rescaling transforms the
time-varying baseline �E ,R� system into the positive-
feedback system

Linear part Integral part Stimulus

�u

�t
= − u − v + �

R2
�EE�x − x�,y − y��

�f�u − ��dx�dy

+ �x,y,t�

�v
�t

= 	�
u − v�
�4�

Here �EE is positive, continuous, integrable, symmetric, and
has the typical connectivity form described in the model sec-
tion earlier �13,14,28,29�. The parameters 	�0 and ��0 are
constants; 
�x ,y�=��x ,y� /const−1 represents local recovery
properties modulated by the baseline activation factor � �see
the Appendix�. The function 
 plays a particularly important
role in the development of different patterns of electrophysi-
ological activity, including traveling activity waves and the
self-assembly of neuronal populations into synchronously
oscillating functional groups �2�. This is consistent with ob-
servations that the time course of the relative refractory rate
of the neurons plays an important role in the dynamics of
neuronal bulks �3�. Because E and R do not change signifi-
cantly from the rest level E=R=0 over the time interval 0
� t�T2, we assume that

u�x,y,T2� = v�x,y,T2� = 0 for all �x,y� � R2. �5�

Below, in Secs. II B and II C we describe two additional
properties of Eq. �4� which are needed for the transition from
the time-independent baseline to the time-varying baseline
state.

B. Principle II

The linear part of the positive-feedback network �4� ex-
hibits decaying oscillations whose frequency increases with-
out bound as 
 increases. To understand how oscillations
arise in the linear part of Eq. �4� we study

�u

�t
= − u − v ,

�v
�t

= 	�
u − v� . �6�

We let 
 be a constant and examine the effects of the asso-
ciated eigenvalues ��= �−�	+1����	−1�2−4	
� /2 over

different ranges of 
. When 
 is small, �� are real and
negative, and solutions of Eq. �6� cannot oscillate. Instead,
they monotonically approach the constant state �0,0� in the
�u ,v� phase plane. When �� are real, the only patterns of
functional activity in Eq. �4� that can be initiated by the
stimulus  are solitary traveling waves or wave fronts
�15�. When 
 increases and passes the critical value 
*
= �1−	�2 /4	, the eigenvalues become complex; all nontrivial

solutions of Eq. �6� are now oscillatory and spiral into the
constant state �0,0� in the �u ,v� phase plane. The frequency
of these oscillations is given by �4	
− �	−1�2 /4�; as 

increases from 
*, the frequency rises without limit.

C. Principle III

At a critical 
*�
* bistability occurs in the positive-
feedback network: a stable, spatially independent, periodic
solution and a stable rest state coexist over a continuous
range of parameters. To understand how bistability occurs in
Eq. �4�, we study spatially independent solutions. These so-
lutions satisfy

�u

�t
= − u − v + f�u − �� ,

dv
dt

= 	�
u − v� . �7�

When 0�	�1 and the activation threshold � is relatively
small �e.g., 	=0.1 and �=0.1�, there is a second critical
value 
*�
* such that if 
�
* then Eq. �7� has a stable
periodic solution �whereas no periodic solutions exist when

�
*�. An example of such periodic solutions is shown in
the second row of Fig. 1.

Figure 1 also illustrates how system Eq. �7� exhibits in-
creasingly oscillatory patterns of solutions as 
 increases
from 
*. These patterns include monotonic damping �top
row�, damped oscillations �second row�, and the transition to
bistability in which stable periodic solutions coexist with one
or more stable rest states �third and fourth row�. A standard
phase-plane topological shooting argument can be used to
prove the existence of the periodic solutions in Fig. 1.

D. Emergence of SSO

We now show how these principles lead to the initiation
and spread of self-sustained synchronous oscillations �SSO�
in the positive-feedback system �4�; for simplicity, this pro-
cess is analyzed in one dimension �Fig. 2�. Numerical simu-
lations confirm that the same process holds in two dimen-
sions �Fig. 3�a��. Because all three principles are invariant
with respect to dimension, we conjecture that our results also
hold in three dimensions. It is possible to couple two sepa-
rate three-dimensional systems of the form �E , I ,R� together
to model interaction across cortical layers.

The first step of the process is described by Principle I
�see the appendix for details� which shows analytically how
appropriate activation factors quickly transform the dynam-

FROM BASELINE TO EPILEPTIFORM ACTIVITY: A… PHYSICAL REVIEW E 77, 061911 �2008�

061911-5



ics of Eq. �1� into those of the canonical positive-feedback
network �4�.

The next step is to understand the dynamics of Eq. �4�
when the recovery function 
 is held constant at a level 

�
*. To initiate an SSO, a stimulus is applied at an arbi-
trarily chosen spatial point �Fig. 3�a��. By Principle III, there
is a stable, spatially independent, periodic solution �i.e., a
bulk oscillation�, which causes the solution of Eq. �4� to
begin oscillating at the point of stimulus. Subsequently, at
nearby points, the solution also begins to oscillate; these os-
cillations become spatially uniform and in phase over a
gradually expanding region, referred to as the SSO region, or
equivalently, the region of synchrony �Fig. 2, rows 2 and 3�
�supplementary movie S1 �52��.

The rate of expansion of the SSO region is determined by
an interplay between two key features: �i� the speed c of
waves that form and propagate outward from the edge of the
region, and �ii� the concave shape of the graph of the activa-
tion variable u as it rises, during each cycle, from the resting
state u=0 to the activation threshold level � �Fig. 4�. �The
exact point where the concave region starts is given by

ut

u
=− 	�
+1�

1+	 ; u is negative at this point. However, the maximal
concavity of the solution occurs over the time interval on
which u increases from 0 to �. During this subthreshold in-
terval, whose length is denoted by �t, the solution satisfies
Eq. �6�, which is equivalent to utt=−�1+	�ut−	�
+1�u.�
Thus, utt is negative and u is concave since ut and u are both
positive as u rises from u=0 to u=�. Due to concavity, it
takes a relatively long time ��t� for the activation u to reach
its threshold �.

From our numerical experiments we observed that during
the rise of a solution towards threshold, as the rate of vertical
increase slows down due to the concave component, the

stable solitary wave emanating from the region of SSO
causes the region to expand spatially at a rate proportional to
the wave speed. From this initial observation it was natural
to expect that the proportionality constant should be the frac-
tion of the time that the solution is concave during one cycle.
This led us to conjecture formula �8� below, which predicts
the rate of migration of the leading edge of the SSO region
�rate�, and its validity was borne out by numerical experi-
ment �Table II�. The rate �R� is determined by a product of
two factors, the fraction �t /T, where T is period of each
oscillation, and the wave speed c,

R =
�t

T
c . �8�

Our numerical simulations show that the rate calculated us-
ing formula �8� gives a �1% error per cycle of SSO �or
equivalently, �15% cumulative error until the leading edge
of the region of SSO reaches x=100� of the numerically
computed solutions. Since 0��t /T�1, Eq. �8� shows that
the migration rate of SSO is a fraction of the speed of trav-
eling waves, which is consistent with experimental and clini-
cal observations regarding the spread of epileptic activity �3�.
In addition, simulations show that the ratio �t /T and the
speed c both decrease as 
 increases �Table II�. The mecha-
nism described above provides a plausible explanation for
sustenance of epileptiform activity without a hypothetical
driving source that, despite a number of experimental stud-
ies, has never been observed �3�.
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FIG. 1. �Color online� Phase portraits �left� and corresponding
time plots �right� of spatially independent solutions of Eq. �7� when
�	 ,��= �0.1,0.1�. Top row: When 
=4�
*=12.61, all solutions
monotonically approach a constant state. Second row: When 

=
*, a stable periodic solution emerges if the stimulus �x ,y , t� is
sufficiently strong. Third row: In addition to the stable periodic
solution shown in the second row, the system has the stable rest
state at �0,0�, which attracts solutions initiated by lower-amplitude
stimuli. Therefore, the system is bistable. See Table I for details.
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FIG. 2. �Color online� From top to bottom: Progressive growth
of the region of self-sustained synchronous network oscillations in
one dimension; 
=12.61, ��x�=0.5e−
x
. See supplementary movies
S1 and S2 see �52�. Synchronous oscillations emerge following a
stimulus �top� and gradually expand outwards, as the entire network
synchronizes �second and third panels�.
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E. Comparison of the theoretically predicted and experimental
rate in a human case study

To compare the rate predicted by formula �8� with experi-
mental data obtained by Towle et al. �8� by placing an array
of recording electrodes on the cortical surface of a human
subject experiencing epileptic seizures, we estimated the pe-
riod T and the length �t of the concave segment in each
oscillatory wave form of the human corticographic recording
in Fig. 3�b� �bottom-right tracing marked “data,” under the

heading “synchronous self-sustained oscillations”�. Using
this estimation, we found that the values of T and �t in each
cycle lie in the ranges

0.21 s � T � 0.22 s and 0.03 s � �t � 0.05 s.

From these estimates we obtained the range 0.136�
�t
T

�0.238. Substituting these bounds into formula �8�, and us-
ing experimentally measured wave speed c in the human

FIG. 3. �Color online� �a� from top to bottom: Progressive growth of the region of self-sustained synchronous network oscillations in two
dimensions �see supplementary movies S1 and S2 �52��. Synchronous oscillations that emerge following a stimulus �top� gradually expand
outwards, as the entire network synchronizes �bottom�. �b� Top: Time series of electrical activity registered by a single electrode shown by
a white dot in �a�. The first three traveling activity waves are followed by three SSO oscillations. Horizontal dotted line indicates activation
threshold. The initial subthreshold segment of the traveling wave is convex, whereas that of the SSO is concave. The transition from
traveling waves to SSO occurs between the third and fourth cycle. Bottom: Comparison of traveling activity waves �left� and SSO �right� in
the model with corticographic data recorded from one of the electrodes located on the surface of the brain during migration of seizure
activity across the region of the recording electrodes. The bottom row shows the dynamics of electrical activity recorded directly from an
electrode chronically implanted onto the surface of the brain �right parietotemporal area� during migration of seizure activity across the
recording region in a 7-year old female �8�. �c� Direct �subdural� electrocorticographic recordings obtained during seizures from chronically
implanted electrodes �10 mm center-to-center spacing� on the surface of the left temporal lobe of a 52-year old female �8�. Note that
large-amplitude oscillatory pattern of activity at three neighboring electrodes has identical frequency and phase; the activity is relatively
quiescent at the rest of the recording sites. Note also that a slowly rising region precedes each large spike. These properties strongly suggest
that an entire region has become synchronized, in agreement with predictions of the model.
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visual cortex �22.4 mm /s �35��, we obtain the range of theo-
retically predicted rate �RT�,

3.046 mm/s � RT � 5.331 mm/s. �9�

Next, we estimated the rate of migration of the leading edge
of synchronized oscillatory activity from the simultaneous
multielectrode “maps” of cortical activity constructed by
Towle et al. �8�, which gave an experimentally measured R
�4 mm /s. Note that the experimentally measured R is
within the range of the theoretically predicted values given in
Eq. �9�, despite the approximate values used in these com-
putations. Summarizing, the ratio R /c predicts that the lead-
ing edge of the region of synchronous seizure activity mi-
grates approximately 4–7 times slower than normal brain
wave activity, which is not in disagreement with the results
of human case study of epileptic seizures reported by Towle
et al. �8� These preliminary data also suggest that further
research into the accuracy and generalizability of formula �8�
for different populations and types of epileptiform activity is
warranted. In particular, longer recordings from densely
spaced electrodes will provide more accurate measurement
of the values of T and �t and their spatial and temporal
distributions, allowing more rigorous validation of formula
�8�.

Peskin, and Mirollo and Strogatz describe similar
concavity-delay mechanisms in their analyses of synchro-
nized behavior of cardiac cells and populations of fireflies
�36,37�. They found that concavity is a necessary condition
for synchronization to occur. In particular, they used the con-
cave component of the curve between the baseline rest state
and threshold in the analysis. Here, we have extended their
results by introducing a formula that estimates the rate of
expansion of the synchronizing region with the use of both
the positive part of the concavity and the speed of a stable
solitary wave �supplementary movie S3 �52��.

The models used by Peskin, and Mirollo and Strogatz
represent arrays of coupled oscillators, each one describing
the repetitive firing of an individual cardiac cell or a firefly.
Our model is different because no self-sustained oscillations
emerge without an appropriate stimulus. Indeed, if a stimulus
at a given point is not sufficiently strong, the SSO phenom-
enon does not occur. Instead, the solution evolves into a
pulse-shaped traveling wave �supplementary movie S3 �52��.
However, when an initial stimulus is of sufficient magnitude,
oscillations do emerge and spread outwards from the point of
stimulus.

The first row of Fig. 3�b� shows the time tracing of a
solution of Eq. �4� at a single recording site �white dot in Fig.
3�a��. Initially, the recording site is outside of the SSO re-
gion. In the time tracing the shape of the subthreshold sec-
tion during the first three oscillations is convex, indicating
that these oscillations represent traveling waves of activity
because the recording site is outside the region of synchrony.
However, during the 4–6th oscillations the shape of the sub-
threshold activity has changed from convex to concave,
which shows that the leading edge of the SSO region has
reached the recording site. This change from convex to con-
cave shape is in agreement with the theoretical predictions
that follow from our analysis. Recent neurophysiologic stud-
ies in rat hippocampus have confirmed, both in vitro and in
vivo, the existence of the subthreshold slowly rising,
concave-form activation that precedes the action potential
upstroke �38�. Experimental evidence suggests that this phe-
nomenon represents activation of a subpopulation of neurons
that escape inhibitory influences due to heterogeneous con-
nections or irregular spread of activity �38�.

The dynamic behavior described above has also been ob-
served by Towle et al. �8� in human studies of electrical
activity in the brain. The second row of Fig. 3�b� compares
the dynamics of electrophysiological activity at a single site

0 3 6

-0.5

0

0.5 u

�
�t

�

t

T

FIG. 4. The graph of the activity variable u during a single cycle
of SSO oscillation for 
=12.61. When u rises from the resting state
0 to the threshold �, the shape of the graph is concave. The con-
cavity of u on this interval, of length �t, is one of the key features
determining the rate of expansion of the region of SSO.

TABLE II. The rate of spread of the region of SSO for different values of 
. RT is the rate predicted using formula �8�; RC is the rate
calculated in computer experiments using the time required for the leading edge of the region of SSO to reach x=100; Ex=100, the error
between RT and RC representing the error accumulated over all oscillatory cycles required for the leading edge of the region of SSO to reach
x=100; Nc, the number of oscillatory cycles required for the region of SSO to reach x=100; Ec= �1 /Nc�Ex=100.


 �t T �t /T c RT RC Ex=100 Nc Ec

12.61 0.780 7.248 0.108 3.665 0.394 0.442 0.122 31.181 3.91�10−3

14 0.585 6.225 0.093 3.624 0.338 0.370 0.0947 43.373 2.18�10−3

15 0.510 5.910 0.086 3.593 0.310 0.325 0.0484 52.115 9.29�10−4

16 0.465 5.655 0.082 3.563 0.293 0.331 0.130 53.404 2.43�10−3

17 0.420 5.415 0.077 3.532 0.272 0.306 0.125 60.388 2.07�10−3
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in the model with activity registered by an electrode chroni-
cally implanted directly onto the surface of the human brain
�8�. This human subject undergoes an electrocorticographic
recording during migration of seizure activity across the re-
gion of recording electrodes. These experiments capture the
dynamics of the onset and spread of SSO. In particular, the
second row of Fig. 3�b� shows how a pattern of electrical
activity changes from traveling waves when the seizure ac-
tivity is outside of the recording electrode, into large-
amplitude, self-sustained oscillations �SSO� when the seizure
activity is directly under the electrode. Note the remarkable
similarity between the patterns of model-generated �row 1�
and neurophysiologic data �row 2� showing traveling waves
and bulk oscillations �SSO�. During each upstroke concavity
is clearly visible in the sub-threshold interval of the SSO
patterns but not in the traveling waves. Figure 3�c� shows
electrophysiologic data obtained from an array of electrodes
chronically implanted on the surface of the brain in another
human subject also suffering from intractable epilepsy �8�.
Note that three electrodes record synchronous large-
amplitude oscillations, whereas activity is relatively quies-
cent at the rest of the recording sites. The uniformity of
frequency and phase strongly suggests that the large-
amplitude synchronous oscillatory activity represents persis-
tent bulk oscillations in an entire spatial region containing
the three recording electrodes. It is interesting to compare the
frequency of oscillations in Figs. 3�b� �second row� and 3�c�.
The large-amplitude synchronous oscillations entraining the
entire region sampled by the three recording electrodes �Fig.
3�c�� are several times slower than those migrating across the
region of recording electrodes �second row of Fig. 3�b�� �8�.
Again, the observation that persistent, spatially uniform os-
cillations over a relatively large region are associated with
the slower rhythm �Fig. 3�c�� agrees with the theoretical pre-
dictions of Eq. �8�.

F. A kindling-type interaction

A kindling-type interaction, in which epileptiform activity
spreads from one region to another has been well docu-
mented �39�. To investigate the rules of interaction between
neighboring regions, we consider distinct spatial regions
with different synchronization properties

The first row of Fig. 5 shows distinct disk-shaped regions
D1 and D2, which are separated by a “buffer” region, and
with two different 
 values, 
1 and 
2, such that 
*�
1
�
2. This allows synchronization to occur in both regions.

However, 
�
* outside and between these regions, so
that synchronization does not occur in the buffer region.
Since 
1 and 
2 are completely independent of each other,
the difference between the two 
 values can be large and the
two regions can synchronize at substantially different rates.
An initial stimulus is given at the center of D1 �left�. As the
solution synchronizes in D1, activity waves propagate out-
wards and trigger synchronization in D2. Subsequently, the
SSO region D2 also starts emitting activity waves. Because
the region between D1 and D2 is relatively large, the activity
waves coming from D1 meet and annihilate the waves com-
ing from D2. In the buffer region, synchronization is not

possible since 
�
*. The end result is that the regions D1
and D2 remain synchronized at two distinct frequencies
�supplementary movie S4 �52��. Because 
1�
2, the uni-
form oscillations in D1 have lower frequency than in D2
However, as formula �8� shows, the rate of synchronization
in D1 is faster than in D2. These results give a plausible
explanation of how remote sites can synchronize in the brain
and, as noted above, are consistent with observations that
lower-frequency EEG rhythms entrain larger areas of the
brain than higher-frequency rhythms �2�. Our finding that
synchronization spreads most efficiently at slower frequen-
cies is also consistent with recent fMRI data, corresponding
to local-field neural activity �4�, which show a stronger spa-
tial response to lower-frequency visual stimuli �40�.

In the second row of Fig. 4, the two disk-shaped regions
have the same 
 values as above, but now D1 and D2 are
close to each other and the size of the buffer region is sig-
nificantly reduced. Again, an initial stimulus given at the
center of D1 causes synchronization to begin; in turn, activity
waves are formed and emitted outwards. These waves trigger
synchronization in D2, and activity waves are also emitted
from region D2. However, because the buffer region is small,
the activity waves from D2 enter D1 and quickly annihilate
synchronization in D1. The end result is that synchronization
persists only in region D2 �supplementary movie S5 �52��.
Thus, we conclude that when the buffer is small, the region
with higher-frequency oscillations dominates and inhibits
synchronization in the slower-oscillating adjacent region.

Our experiments indicate that two complete wavelengths
of the traveling wave is the minimal buffer width. When the
disks are located closer, the wave emanating from the faster
oscillating region enters the other region before the slower
oscillating region can emit a wave. Because these waves

Absorbing Buffer

D1 D2 D1 D2

No Buffer

D1 D2 D1 D2

FIG. 5. �Color online� Interaction between low-frequency and
high-frequency SSO in distinct regions. Top row: 
1=12.61=
*

inside the disk-shaped region D1 : �x+20�2+y2�100; 
2=15 inside
the region D2 : �x−20�2+y2�100; 
=7 otherwise. Bottom row:

1 ,
2 have the same values as above, but now D1 and D2 are close
to each other: D1 : �x+20�2+y2�400, D2 : �x−20�2+y2�400. See
text for details.
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have to meet in the buffer region to annihilate each other, a
smaller buffer region would not allow this annihilation phe-
nomenon to occur. Thus, if the buffer region is smaller than
two complete wavelengths of the traveling wave, waves from
the faster oscillating region �higher 
� will successfully
reach the other region and interfere with the synchronization
in that region. We found in our experiments that even a unit-
size disk emits traveling waves as synchronization develops
and can trigger synchronization in other regions that are lo-
cated at least two wavelengths away.

III. CONCLUSIONS

Our study has shown how a neural network can undergo a
series of transformations from the “mathematical” rest to
physiological baseline and ultimately, rhythmic, self-
sustained epileptiform activity.

We have also shown that the emergence of synchronous
self-sustained oscillations in large-scale population networks
can be anticipated when the following three principles hold:
�1� The network with both positive and negative control
mechanisms can be transformed into a strictly positive-
feedback system by activation factors and external stimuli,
�2� the linear part of the positive-feedback system exhibits
decaying oscillations whose frequency increases without
bound as 
 increases, and �3� at a critical 
*, stable, spatially
independent, periodic solution comes into existence and co-
exists with a stable rest state over a continuous range of
parameters. These principles depict sufficient conditions for
the spontaneous development of synchronous oscillations in
complex, multicomponent networks. Furthermore, our study
explicitly links the emergence and spread of self-sustained
synchronized oscillatory activity with the modification of re-
covery properties of the network by stimuli. As 
 varies from
0 to 
*, our model is capable of reproducing a number of
dynamic phenomena, including wave fronts, solitary, and
multibump waves, as well as the self-sustained periodic for-
mation of traveling waves, and also rotating waves. All of
these phenomena have been observed in neurophysiological
experiments �5,10,25,41�. We address mathematical proper-
ties of these types of solutions elsewhere �15�.

Our work further extends a large body of work on pattern
formation, including global oscillations �i.e., cortical syn-
chronization� and more complicated behavior, that have been
well documented in neural field models �26,42�. Similar field
models with nonlocal coupling have been described by Er-
mentrout �26�, Gerstner and Kistler �43�, Coombes �44�, and
Bojak and Liley �42�. Our work further extends these studies
and provides results with respect to the refractory variable R
as well as the specific forcing �the activation factors � and �,
and stimulus function ��x ,y , t�� that effectively force the
system to undergo a series of transformations from math-
ematical rest to the baseline state and, ultimately, to self-
sustained oscillatory activity. In contrast to previous studies,
we have found that the self-organization process does not
depend on the presence of noise or a priori built-in periodic
forcing �45,46�. Instead, this is a result of the intrinsic dy-
namics of population networks characterized by strong, long-
range connectivity.

Previously, Bojak and Liley have reproduced a realistic
spectrum of electrophysiological activity in a mean-field
model �21�. In this study, we did not attempt to reproduce a
realistic power spectrum which represents a combination of a
number of electrophysiological processes. Theoretically, it is
possible to extend our approach in this direction by adding
more appropriately chosen components to the stimulus func-
tion ��x ,y , t�. However, our goal was to describe general
properties �principles� of the system dynamics and transfor-
mations from mathematical rest to a more realistic �time-
varying� state, here referred to as the time-varying baseline,
and finally to a state of SSO.

Our analysis uncovers a plausible transition from baseline
activity patterns to synchronized epileptiform rhythmicity.
More elaborate versions of WC-type models, including those
of the thalamocortical networks with multiple modules and
subunits �47� or detailed synaptic interactions �21,48�, have
also been used to reproduce epileptiform activity. By con-
trast, our model is substantially simpler, hence it is more
general and theoretically tractable at the expense of a less
detailed description of brain architecture and synaptic inter-
actions.

Our findings that rhythmicity can arise in complex, mul-
ticomponent networks as a result of dynamic, self-organizing
behavior without periodic driving force may be relevant to
the analysis of slow rhythms in the cardiac, respiratory, and
vascular neurohormonal regulation which remain largely un-
explained �49–51�. Of particular interest for future studies is
to determine the types of epileptiform activity and patient
populations for which formula �8� can predict the rate of
migration of the leading edge of synchronous oscillations. It
also important to determine whether our three principles are
not only sufficient, but necessary for spontaneous self-
organization. Thus, analysis of theoretical principles and
functional behavior of neural networks presented here might
be useful for gaining insights into the origins and spread of
epileptiform activity and other important problems of con-
temporary neuroscience.
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APPENDIX

In this section we show how system �1� which is initially
in State I �Table I�, mathematically characterized by

E�x,0� = I�x,0� = R�x,0� = 0 for all x , �A1�

undergoes a transition to State III �Table I� which is math-
ematically expressed as

E�x,t� � �1 and I�x,t� � �2 for all x . �A2�

For simplicity, we carry out the analysis in one dimension.
However, all details are exactly the same in two and three
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dimensions. We follow a two-step process. First, we make
simple, general assumptions on the baseline activation fac-
tors � and �, and stimulus �, and determine global bounds
on functions and parameters which appear in the model. Sec-
ond, we make use of these assumptions and bounds and carry
out the analysis.

1. Assumptions and global bounds

First, we assume that the activation factor ��x� is stronger
than ��x�. Our analysis will show how this assumption con-
tributes to achieving and maintaining subthreshold level of
activity of the excitatory population in the time-independent
baseline state �Table I, part III�. Specifically, we assume the
following:

�i� Let L�0 and �3� �
�1

2 ,�1� be fixed. Assume that ��x�
is continuous and satisfies

0 � �1 − �3 � ��x� � L��1 − �3� for all x , �A3�

where �1−�3�0 and sufficiently small so that ��x� is uni-
formly small.

�ii� For simplicity, we assume that ��x� is constant and
has the form

� = �
R

�II�x��dx� + �1 + ���2. �A4�

We also assume that the activation factor ��x� is uniformly
large for all t�0. This is achieved by letting ��0 be large.
As we shall show, this causes the activity level of the inhibi-
tory neurons to rapidly increase until a time T* is reached
where I uniformly exceeds its threshold �2. In particular, we
will show that the inhibitory activity I remains above �2
when t�T*. That is,

I�x,t� � �2 for all t � T* and x . �A5�

Physiologically, inequality �A5� corresponds to the state of
tonically active inhibition �18,22�.

Definition of 
. We define


�x� =
��x�

�1 − �3
− 1 for all x . �A6�

We will investigate system dynamics for both constant and
spatially variable 
.

Global bounds. We now obtain global bounds which are
needed in the analysis of �1�: it follows from assumptions
�i�–�iii� that there is a value M �0 such that

0 � �
R

�EE�x��dx� + ��
R

�IE�x��dx� + ��x� + ��x,t�

� M for all x and t � 0, �A7�

0 � 
 =
��x�

�1 − �3
− 1 � K = L − 1 for all x . �A8�

2. The analysis

Here, we determine the effects of the activation factors
��x� and ��x�, and the stimulus � on the dynamics of �1�.

The analysis consists of the following three steps:
�I� From �1� and �A2�, and assumptions �i�–�iii� it follows

that

Et�x,0� = ��x� � 0, Rt�x,0� = 0,

It�x,0� = ��x� � 0 for all x . �A9�

Thus, E and I begin to increase as t increases from t=0.
Below we show that if ��x� is uniformly large then I quickly
increases and exceed its threshold level �2. For this we define
the reference point

T0 = ln�1 +
�1

K�1 + 2M
 , �A10�

where M �0 and K�0 satisfy Eqs. �A7� and �A8�. Through-
out, our analysis will make use of the observation that T0 is
independent of ��x�.

�II� We need the following estimates:


E
 � �K�1

2
+ M�et − 1� �

�1

2
and 
R
 � 	K

�1

2
�1 − e−	t�

for all x and 0 � t � T0. �A11�

To prove Eq. �A11� we begin with the following observa-
tion: for t�0, as long as 
E
�

�1

2 then the equation forR in
Eq. �1� reduces to

− 	K
�1

2
� Rt + 	R � 	K

�1

2
for all x and t � 0.

�A12�

Multiply Eq. �A12� by e	t, integrate from 0 to t, and obtain

−
K�1

2
�1 − e−	t� � R�x,t� � K

�1

2
�1 − e−	t�

for all x and t � 0. �A13�

Next, it follows from the first equation in Eq. �1�, and the
global bound �A7�, that

− M + R � Et + E � M + R for all x and t � 0.

�A14�

Substitution of Eqs. �A13� into �A14� gives

−
K�1

2
�1 − e−	t� − M � Et + E � M +

K�1

2
�1 − e−	t� ,

�A15�

which holds for t�0 as long as 
E
�
�1

2 . Finally, we multiply
Eq. �A15� by et, integrate from 0 to t, rearrange terms, and
conclude that


E�x,t�
 � �K
�1

2
+ M�et − 1�

�
�1

2
for all x and t � �0,T0� . �A16�

This completes the proof of Eq. �A11�.
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Remark. The estimates in Eqs. �A13� and �A16� hold uni-
formly with respect to x and t� �0,T0�. These bounds also
guarantee that 
E�x , t�
 and 
R�x , t�
 remain uniformly small
over short intervals of time.

�III� We now determine the behavior of I�x ,y , t� over the
interval 0� t�T0. From Eqs. �1� and �A4� it follows that
I�x ,y , t� satisfies �It+ I� �1+���2. Solving this differential
inequality gives I�x , t�� �1+���2�1−e−t/�� for t�0 since
I�x ,0�=0. At t=� ln��1+�� /�� we have

I�x,� ln� �1 + ��
�

� � �2 for all x .

Therefore, there is a minimal T*� �0,� ln��1+�� /��� such
that

I�x,t� � �2 for all x and x � T*. �A17�

Remark. Property �A17� represents the population of in-
hibitory neurons becoming tonically active at t=T*, and re-
maining tonically active for all t�T* �18,22�. Below, we
analyze the most important implications of Eq. �A17� for the
system’s dynamics.

First, note that inequality 0�T*�� ln��1+�� /�� causes

T* → 0 as � → � . �A18�

In particular, we let � be large enough so that 0�T*�T0,
where T0 is the reference point defined in Eq. �A10�. Next, it
follows from Eq. �A17� that the Heaviside function f�I�x , t�
−�2� satisfies

f�I�x,t� − �2� = 1 for all x and t � T*. �A19�

It is important to observe that property �A19� implies that

�
R

�IE�x − x��f�I − �2�dx�

= �
R

�IE�x��dx� for all x and t � T*. �A20�

The baseline state system. Because of Eq. �A20�, observe
that when T*� t�T0, the �E ,R� component of the solution
of Eq. �1� satisfies

�E

�t
= − E − R + �

R

�EE�x − x��f�E − �1�dx�

− ��
R

�IE�x��dx�dy� + ��x� + � ,

�R

�t
= 	�
E − R� . �A21�

Below, we explain the effects of the different components of
� on the dynamics of Eq. �A21�. Our goal is to describe the
time sequence of events that transforms Eq. �A21� to the
time-varying baseline state. In particular, we will show how
our choice of � causes the form of system �A21� to undergo
a sequence of switches at the times T1 and T2 which satisfy
�see �2� and Table I�

T* � T1 � T2 � T0. �A22�

First, recall that ��x ,y , t�=0 on the interval T*� t�T1
�Table I, part II�, hence Eq. �A21� becomes

�E

�t
= − E − R + �

R

�EE�x − x��f�E − �1�dx�

− ��
R

�IE�x��dx� + ��x� ,

�R

�t
= 	�
E − R� . �A23�

The dynamic behavior of E and R is governed by Eq. �A23�
when T*� t�T1.

Switch 1. At t=T1 the stimulus changes from �=0 to �
=�	wIE, and this causes �A21� to switch its form from Eq.
�A23� to

�E

�t
= − E − R + �

R

�EE�x − x��f�E − �1�dx� + ��x� ,

�R

�t
= 	�
E − R� . �A24�

We refer to Eq. �A24� as an excitable system �Table I, part
III� since �EE only describes connections between popula-
tions of excitable neurons, and the activity I of the inhibitory
neurons plays no role in its dynamics when t�T1 �13�. The
dynamic behavior of E and R is governed by Eq. �A24� when
T1� t�T2. Note that the system is inactive since E��1 on
T1� t�T2.

Switch 2. At t=T2, we add a strong, instantaneous stimu-
lus  to the previously applied stimulus �=�	wIE. We let 
satisfy

�x,t� = �Ae−�x2�, t = T2,

0, t � T2.
� �A25�

This causes Eq. �A24� to switch its form to

�E

�t
= − E − R + �

R

�EE�x − x��f�E − �1�dx� + ��x� + �x,t� ,

�R

�t
= 	�
E − R� . �A26�

When t�T2 the dynamic behavior of E and R is governed by
Eq. �A26�. To analyze the dynamics of Eq. �A26�, it is con-
venient to rescale the variables and parameters by setting

u = E −
��x,y�
1 + 


, v = R −

��x,y�

1 + 

,

� = �EE, � = �1 −
��x,y�
1 + 


. �A27�

This transforms �A26� into the canonical, excitable form of
Eq. �4�.
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Recall from Eq. �A6� that 
= ��x�
�1−�3

−1. This, and Eq.
�A27� imply that �=�3 in Eq. �4�. The dynamic behavior of
system �4� depends on the stimulus  and the functional form
of 
. Detailed analysis of the behavior of Eq. �4� in different
ranges of constant values of 
 is described in Sec. II A and
II B the effects of spatially variable 
 are shown in Sec. II C.
In these sections we show that there is a critical value of 
*

such that, when 
�
*, large-scale synchronous oscillations
occur when �x ,T2� is of sufficient magnitude. Other types of
functional activity that arise when 
�
* are also described
in the main body of the manuscript. Since we apply stimulus
 at time t=T2, we need to estimate the values of u and v at
t=T2. It follows from Eqs. �A6� and �A27� that

u�x,T2� = E�x,T2� − ��1 − �3� ,

v�x,T2� = R�x,T2� − �� − ��1 − �3�� . �A28�

From Eqs. �A13� and �A16� we conclude that


E�x,T2�
 � K
�1

2
and 
R�x,T2�
 � K

�1

2
. �A29�

From Eqs. �A28� and �A29� we obtain the estimate

−
3�1

2
+ �3 � u�x,T2� � −

�1

2
+ �3. �A30�

Since we assume �see �ii�� that �3��1 and �=�3, we can
approximate Eq. �A30� with


u�x,T2�
 �
�

2
for all x . �A31�

Similar reasoning gives the estimate


v�x,T2�
 � K
�

2
for all x . �A32�

The estimates given in Eqs. �A31� and �A32� imply that
u�x ,T2� and v�x ,T2� are approximately zero when T2−T*

�0 is small. Hence, for computational simplicity we assume
that

u�x,T2� = v�x,T2� = 0 for all x . �A33�

At T2 we apply the stimulus �x ,T2� to the system �4� with
initial values given in �A33�. If the stimulus �x ,T2� is strong
enough and 
 is in an appropriate range, synchronous self-
sustained oscillations are initiated at the point of stimulus
and spread outward. The detailed description of this process
is given in the main body of the manuscript.
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